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t.... 3 The subject of this report is the analytical solution for wave motions,
in the fundamental mode, of an elastic tube filled with fluid when the wall
thickness is not constrained to be small.

The results obtained show the existence of two waves which travel at
different speeds. Each of the two waves causes both loagitudinal and radial
displacements of both the tube wall and the fluid, but in different proportions,

The slower wave, in the limiting case of the than-wailed tube, im identi-
fled as the bulge wave. It is characterized by relatively large motions of the[ fluid, which contains moat of the kinetic energy. Thicker walls produce a higher
bulge-wave speed, but the inclusion of longitudinal stiffening elements has very
little effect.

The faster wave is what has been called the 'wall wave."' This Is mostly
a longitudinal vibration of the home material, with a relatively small participation

by the fluid, and is greatly influenced by longitudinal reinforcement of the tube
wall.
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* WAVE MOTION IN A THICK-WALLED FLUID-FILLED HOSE

INTRODUCTION

¾ Random pressures on the outside surface of a fluid-filled hose,

originating from a turbulent boundary layer or other sources, excite waves which

p travel along the fluid-filled hose as in a wave guide. Consequently, inside the

hose there exist noise pressures which are correlated over large distances,

An important characteristic of this phenomenon Is the speed of such waves,

which is in general well below the acoustic rpeed because of the relatively soft

!, boundary which the hose presents to the inner column of fluid.

Previous mathematical models of such flexible hoses have reduced

them to membranes with circumferential stresses only. Longitudinal motions

and stresses in the wall were ignored. This model proved very adequate for

hoses with thin walls.

Recent interest in hoses of smaller size, where hose material occupies

a considerable part of the total cross section, requires that the analysis be

extended to include the wave motion in the wall as well as the fluid.

Thus the subject of this report is the analytical solution for wave

motions, in the fundamental mode, of an elastic tube filled with fluid when the

wall thickness is not constrained to be small (Fig. 1).

,I.

* FIG. 1 MODEL OF THICK-WALLED HOSE
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The present model then includes as limiting cases the previous

thin-walled tube, where the ratio ai/a of the radii is almost one, and the solid

rod, where this ratio is zero. It also serves as a basis for studies of more

complicated models where the Inner fluid is replaced by a viscous or semisolid

material.

' In accordance with the results of previous investigations the outer

fluid, the ocean in which the tube is submerged, Is ignored, as wave propagation

iI in the hose Is not appreciably influenced by its presence.

The material of the tube is assumed to be homogeneous and isotropic

but in a subsequent modification longitudinal reinforcing elements of an arbi-

trary elastic modulus have been included. The compressibility of both the wall

material and the fluid is neglected only in the simplified final formulas which

are valid for waves of lengths much greater than the tube's transverse

dimensions; in these cases the effects of compressibility become negligible.

The outstanding result Is the existence of two waves which travel

at different speeds. Each of the two waves causes both longitudinal and radial

displacements of both the tube wall and the fluid, but in different proportions.

The slower wave, In the limiting case of the thin-walled tube, is

identified as the bulge wave. It im characterized by relatively large motions

of the fluid, which contains most of the kinetic energy. Thicker walls produce

a higher bulge-wave speed, but the inclusion of longitudinal stiffening elements

has very little effect.

The faster wave is what has been called the "wall wave." This Is

I mostly a longitudinal vibration of the hose material, with a relatively small

participation by the fluid, and is greatly influenced by longitudinal reinforcement

j of the tube wall.

The system functions as a wave-vector filter, that is, there is an

accei•tance function defined as the ratio of inner-fluid pressure to outer forcing

A"LauA1-6



pressure as a function of wave number, with frequency as a parameter. The

acceptance function will show two peaks, or windows, at the wave numbers

corresponding to the fast and slow waves. There is alioa zero in the acceptance

function, at the wave number corresponding to the speed of longitudinal plate

waves in the hose material, and independent of the ,vi.• thicknesea and the inner

fluid'sa density.

METHOD OF SOI.UTION

The very extended niathematical development of the problem will be

Included in this report. The method followed was completely orthodox.

The wave equation in the tube wall Is that corresponding to an

Isotropic elastic material. Both longitudinal and transverse components (having

respectively a svalar and a vector potential) are present, and each has two

terms described by modified Bessel functions. Thus four arbitrary constants

are necessary for the general solution. In the fluid there is only one component

and a fifth arbitrary constant must be introduced.

The determination of the five constants follows from the setting up

of five equations describing boundary conditions. These boundary conditions

are:
o The radial displacements of the fluid and tube wall must

coincide at the interface.

o The tangential stress of the tube material must be zero at

the inner surface.

o The tangential stress must also be zero at the outer surface,

In the absence of reinforcing material: when there is reinforcing

material, this stress must be proportional to the longitudinal

strain.

o The normal (radial) stress in the tube material must balanceI the pressure of the Inner fluid at the interface.
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o Th e normal (radial) stress in the tube material must balance

the outer forcing pressure at the outer surface.

All these equations are transcendental because of the presence of

the Bessel functions. When, however, the assumnption is made that the wave-

lengths involved are long compared with the tube's outer radius, the arguments

of the Bessel functions become small, and they can be approximated by their

dominant terms. Thus the five constants became relatively simple functions

of wavenumber. When there is no forcing pressure, the system of equations

becomes homogeneous, and there can be solutions only for the values of wave

speed that negate the system determinant. This results In a second-degree

equation whose roots are the speeds of the slow and fast waves.

RESU LTS

In calculating and plotting the results, the wave speed is shown to

depend on the tube's wall thickness. In addition, and as parameters, first the

ratio of wall to fluid densities and then the influence of wall reinforcement are

considered.

In the fi rst case, when there is no wall reinforcerment but the ratio

of wall to fluid densities is allowed to vary, the wave speed for both waves is

given as the solution of the following quaadratic:

[3 + sY - - 1i) 0 4 th(e-

where the symbolb have the following meaning:

I j @ is aL nurnber proportional to thie square of the wave speed,

I t pcA/ji, where p is the density of the hose material, 4 its shear modulus

j and c tne save speed. The definition results in 17 being I for plane ,hear waves

in the niaterial of the hose when it has no bounds, 1 - 3 for longitudinal waves

in a free bar of the material, and V = 4 for those in a plate of the material.
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~ the ratio of the densities of the hose material and the
fluid.

D, the ratio of the inner to the outer radius of the hose.

A plot of il as a function of 0, with If an parameter, Is shown in

Fig. 2.

The curves where 1 t3 correspond to the slow wave. The slopes

of the curves at =0 give as the limiting speed for a thin-walled tube

C 4'3 .h1Za .. where h is wall thickne.s and a the outer radium. This

showm that, In the present came of incompressible material, the "circurn-

ferential modulus" E used previously in calculating the bulge-wave speed Ls
t l to be defined as the ordinary Young's mnodulus for a bar, E -"3ý for Incomnpres-

sible material.

The fast wave has 'i t 3, the lower value being that for a solid rod,

and the higher values showing the remarkable influence of the fluid fill. For a

thin-walled tube, n = 4, showing that the tube vibrates longitudinally over a fluid

column that acts as a stiff core.

The second case studied Is where there is an outer sheath of thin,

flexible but longitudinally stiff reinforcing material. The densities of the wall

and the fluid are supposed equal throughout. The wave speeds are now given by-

S[ "'i - t2(l + V) , + (2 V + 1) (1 - 02) - , (2)

Ii where,
Mb a2

M is the longitudinal elastic modulus of the sheath, and 1) its thickness (or the

I equivalent thicknemm of the reinforcing fibers). Where there is no reinforcement,

i, ,i ii ,J~-5-



i 1l, which is the case previously studied, when ;he reinforcement becomes

infinitely stiff, V 00.

'• The stow wave Is very insensitive to the value of v., so there Is

only a small difference between the values of it when Yu I (as In Fig. 2) and

'If when V - 00; then 9 is given by

J IFor a thin-walled tube this gives

10# oa '..

i.e., the reinforcement tends to increase the wave speed to the value calculated

with E a 44., the plate modulus.

The fast wave is made faster by the reinforcement, the asymptotic

value of I/ as v--00 being ZV+ I + . This means that the shape of the curve

of 9 versus 0 hardly changes shape as v Increases. Fig. 3 shows the curves

for v = I and Y= 100.

TRANSFIEI FUNCTION

The free-going waves given by the values of 1 in figs. 2 and 3

correspond to the condition where there is pressure in the fluid with no outside

[ forcing pressure. They are the poles of the transfer function P/po defined as

the ratio of inside pressure over outside pressure,

There in also a zero in the transfer function, at the value of v

where an outside pressure produces no corresponding inner pressure. This

* value of n , called no. Is Independent of 0 and I , and is obtained in the

solution of the system of fivt- equatinns as

2(i +)
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The transfer function is given in general by

iP

t where it and it are the values of it for slow and fast waves respectively.

Then for the first case studied, where Y 1 and Y is arbitrary,

we use Eq. (1) for the denominator and we have

In the second case studied, where V 1 and v is arbitrary, we use Eq. (2):

+ , 1('•+--- 1)Z
Z 2

:1 •Fig. 4 graphs this last case for v = 1 (no reinforcement) and V = 100 (heavy

! 1 1,. •: reinforcement), akainst the nondimensional wavenumber I= (k 2 /] W17-.

The figure shows that overa region of wavenumbers at and below 1/-1

the inner pressure o is larger than the. outer pressure #. ; this is the

"window' of the systemr, the acceptance region of the wavenumber filter,

' ',where noise pickup is enhanced.

The equations in this report make it possible to locate and define

this "window" for a wide range of hose configuaations, and are expected to be

therefore useful In predicting noise levels.
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CONCLUSIONS

This investigation has clarified completely the role the mechanical

properties of the wall play in the determination of wave speed@ in fluid-filled

hoses. Previous models merely defined the wall as an elastic boundary for

the fluid, and assigned to it suitable properties.

H The results for 'Y not equal to unity are of theoretical value only at A

it present, since the densities of the hose and the fluid are normally close to that

. of water for present materialso but aid in understanding wave progression in

the system,

The ability to predict wave motion in thick-walled tubes is the rnain

outcome of this study. It will serve as a sound basis for more elaborate models

which are now being studied (viscous fluid fill, solid fill, etc.). Finally, the

effect of restricting the longitudinal motions of the wall by stiffening member.,

necessary In any practical model, has been adequately taken care of and

assessed.
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